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Abstract. To find the genuineness of a human behavior/emotion is an impor-
tant research topic in affective and human centered computing. This paper uses a
feature level fusion technique of three peripheral physiological features from
observers, namely pupillary response (PR), blood volume pulse (BVP), and
galvanic skin response (GSR). The observers’ task is to distinguish between real
and posed smiles when watching twenty smilers’ videos (half being real smiles
and half are posed smiles). A number of temporal features are extracted from the
recorded physiological signals after a few processing steps and fused before
computing classification performance by k-nearest neighbor (KNN), support
vector machine (SVM), and neural network (NN) classifiers. Many factors can
affect the results of smile classification, and depend upon the architecture of the
classifiers. In this study, we varied the K values of KNN, the scaling factors of
SVM, and the numbers of hidden nodes of NN with other parameters unchan-
ged. Our final experimental results from a robust leave-one-everything-out
process indicate that parameter tuning is a vital factor to find a high classification
accuracy, and that feature level fusion can indicate when more parameter tuning
is needed.
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1 Introduction

A smile is a multifaceted and multi-functional facial display that generally conveys
positive feelings, such as enjoyment, warmth, appreciation, satisfaction, and so on. We
refer to these as real smiles, and refer to conscious attempts to faithfully mimic these as
posed smiles. We also know that people can smile in negative or neutral situations too,
such as arrogance, sarcasm, acted, appeasement, or smile to hide something [1]
including frustration and puzzlement. We refer to these negative and non-happy smiles
as fake smiles, and refer to smiles that signify happiness as happy smiles. With the
growing interest in emotion recognition and human centered computing, intelligent
machines are being developed to determine people’s affective behavior. The recogni-
tion of emotion from others’ facial expressions is a vital and universal skill for social
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interaction [2], and smiles attract more attention than any other regions of faces [3].
Thus, developing a system that understands a smiler’s affective state could be used in
many situations, such as customer service quality evaluation, interactive tutoring
systems, video conferencing, patient monitoring, verifying truthfulness during inter-
rogation or hearings, border control or customs, and so on.

Previously researchers focused on smilers’ faces and/or observers’ verbal responses
to distinguish between real and posed smiles. A computational technique is used to
recognize real smile from smiler’s facial features in [4] and reports 92.9% correctness.
Ambadar et al. [5] scrutinize the characteristics of fake smiles along with their per-
ceived meanings, and find that perceived meanings are related to specific character-
istics. Calvo et al. [1] inspect perceptual, categorical, affective, and morphological
characteristics to recognize happy smiles, and suggest that happy smiles are more likely
to occur with congruent happy eyes and smiling mouth. Frank et al. [6] considers
observers’ self-judgments of happy smiles and notes a 56.0% average response rate.
Hoque et al. [7] execute two experiments for classifying happy and fake smiles from
smilers’ facial features, and report 93.0% and 69.0% accuracies by classifiers and
verbal responses respectively. Although observers may have certain impressions or
feelings during face to face interaction, watching video clips or listening to music [8], it
is not an easy task to distinguish happy and fake smiles from observers’ verbal
responses [6].

On the other hand, physiological signals have the advantage of immediately being
affected by observing facial changes that cannot be posed voluntarily or assessed well
visually [8, 9]. In this regard, many studies [10, 11, 12] have considered peripheral
physiology to recognize facial behaviors. In this paper, we analyzed three physiological
signals from observers – pupillary response (PR), galvanic skin response (GSR), and
blood volume pulse (BVP) – to classify smilers’ affective states into real or posed
classes. We believe ‘real’ to be a more accurate characterization for our work than
‘happy’ as the datasets elicited smiles, so they are real but did not consistently test the
subjects’ emotional state so we cannot confidently say they were happy. The situation
is similar for the smiles which are not real: the subjects were asked to smile, which is a
posed smile, and not fake in the many possible reasons for which people can do a fake
smile.

Pupillary responses can change due to memory load, stress, pain, light intensity,
content of face to face interactions and so on. It has the advantage of needing no
sensors to be attached to the observer, and certainly not to the smiler [10]. GSR is
considered to be a strong physiological signal in emotion detection that measures
electrical changes of human skin automatically [11], and has been used for this task
previously [12]. BVP measures blood volume changes using infrared light through the
tissues, and used as an indicator of emotional changes and affective processing that
affects heart rate and pulse amplitude [13]. The temporal patterns of these physiological
signals are useful while classifying real and posed smile observations. Six statistical
features are extracted from each peripheral physiological signal in each observation and
used to compute classification accuracy using a robust leave-one-out process. By robust
we mean that in each run, we leave out all the samples collected from a particular
subject, along with all other subjects’ responses to that particular stimulus (a short
video in this case). That is, we go beyond leave-one-subject-out, and use
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leave-one-subject-and-one-stimulus-out. Thus, our results are not only subject inde-
pendent, but also stimulus independent. Our aim is to detect smilers’ affective states by
classifying smiler videos into real and posed, from observers’ peripheral physiology
based temporal features, using three classifiers, namely k-nearest neighbor (KNN),
support vector machine (SVM), and neural network (NN). In this paper we thoroughly
examine parameter settings.

2 The Method

We collected twenty smilers’ videos chosen at random from four benchmark database.
We processed them using MATLAB to convert into grey scale, mp4 format with each
video lasting 5 s. The videos are presented in a balanced order, and physiological
signals are recorded from each observer while watching these videos. The signals are
smoothed, filtered, and normalized. Six statistical time domain features are extracted
from each signal. Binary classifiers are employed to classify between real and posed
smiles. The overview of this method is shown in Fig. 1.

2.1 Smile Videos

Ten videos were collected from UvA-NEMO [14] and MAHNOB [15] databases (five
from each) where real smiles were elicited from smilers, by showing a sequence of
funny or otherwise pleasant video clips. Ten videos were collected from MMI [16] and
CK+ [17] databases (five from each) where posed smiles were created by smilers with
experimenters asking or instructing them to display a smile. We used 4 databases to
increase the variation in our stimuli. The collected videos were processed using
MATLAB R2014b to make them uniform in size, format and duration. These are: fixed
aspect ratio of 4:3 (Height = 336 pixels, Width = 448 pixels) with resolution of 72 dpi,
grey scale, mp4 format, and lasting 5 s each. Frame rates are adjusted slightly to make
each video’s length be 5 s long. Luminance (128 ALU – Arbitrary Linear Unit) and
contrast (32 ALU) of smilers are also adjusted and kept similar using the
MATLAB SHINE toolbox [18]. Only faces of smilers are shown to the observers (see
Smiler in Fig. 1), to avoid the side effect of light backgrounds on pupil dilation.
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Fig. 1. Outline of the research.

Effect of Parameter Tuning at Distinguishing Between Real and Posed Smiles 841



2.2 Observers

Twenty-four right-handed healthy volunteers (15 males, 9 females) participated as
observers in the study, with mean age of 30.7 ± 6.0 (mean ± SD). All observers had
normal or corrected to normal vision. They signed an informed consent form prior to
their participation. Ethics approval was received from our Australian University’s
Human Research Ethics Committee, prior to performing the study.

2.3 Peripheral Physiology

Pupillary Response (PR): This physiological signal is measured from the eyes’
responses that vary the size of the pupil. The primary function of this response is to
control the amount of light reaching the retina. When luminance is controlled, then
other influences on pupil size can be detected. Pupil dilation is the widening of the
pupil and is controlled by the sympathetic nervous system and may be happening due
to e.g. high curiosity. Constriction means narrowing the pupil, and that is controlled by
the parasympathetic nervous system and may be happening due to less curiosity [10].
The magnitude of the pupillary response appears to be a function of the attention and
curiosity required to perform a task. This is an involuntary signal that changes with any
event observed by the subject, and recorded here using The Eye Tribe remote
eye-tracker system (https://theeyetribe.com/), with a sampling rate of 60 Hz.

Blood Volume Pulse (BVP): A photoplethysmographic (PPG) sensor measures the
change of blood volume that passes through the tissues over a given period of time, this
is the BVP. A light-emitting diode is used to pass an infrared light through the tissues,
and the returned light is proportional to the volume of the blood in the tissue. BVP
signals are used as indicators of emotional response by measuring the change in
peripheral physiology. It is possible to identify observers’ or subjects’ mental states by
analyzing the variation of BVP amplitudes [13]. In this study, each observer’s BVP
signals are recorded from the wrist of the left hand at a sampling rate of 64 Hz using an
Empatica E4 device (https://www.empatica.com/).

Galvanic Skin Response (GSR): Skin conductance, also known as electro-dermal
response or psychogalvanic reflex, measures the electrical changes in human skin that
varies with changes in skin moisture level (sweating). This is an automatic reaction that
cannot be controlled voluntarily and reflects changes in the sympathetic nervous sys-
tem, and is an indication of psychological or physiological arousal that can be used for
affect detection or mental state recognition [11]. When an observer is more curious,
skin conductance is increased; conversely, the skin conductance is reduced when an
observer finds it easier (less stressful), e.g. to identify a smile video. The same
Empatica E4 sensor as used in BVP recording is used here to record the GSR signals
from the observer’s left wrist, at the maximum sampling rate of 4 Hz.
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2.4 Conduct of the Experiment

Each observer (subject) fills in a consent form for their voluntary participation. A 15.6”
ASUS laptop and a normal computer mouse are peripherals for interaction between the
observer and a laptop running the web-based tool showing the smile videos. The chair
of the observer is moved forward or backwards to adjust the distance between the
observer and eye tracker. Observers are asked to track a spot displayed in the laptop for
calibrating the eye tracker and starting the experiment. Observers are instructed to limit
their body movements in order to reduce undesired artifacts in the signals. The videos
are presented in a balanced way to the observer to avoid order effects. Thus the
positioning of each smiler’s video, near the beginning/middle/end of the experiment, is
different for each observer. Each video is followed by questions to identify the smile’s
real or posed nature, implying the smiler’s affective state. For brevity of discussion,
henceforth we will discuss e.g. ‘real smile’ as an affective state. Due to poor signal
quality and unfinished data collection from two observers, the results are reported by
analyzing data from twenty-four observers.

2.5 Signal Processing

Due to the nature of human bodies, physical movements and other effects, the recorded
peripheral physiology is affected by noise like small signal fluctuations, eye blinking
etc. To reduce this latter effect, eye blinking points are considered to be zero in
pupillary responses. Then, cubic spline interpolation and 10-point Hann moving
window average are employed to reconstruct and smooth the pupil data respectively
[10]. This procedure is applied to the left and right eyes’ pupillary response separately,
and then averaged to find a single pupillary response signal for a specific observer.
A low-pass Butterworth filter (order = 6, normalized cut-off frequency = 0.5) is used to
smooth the GSR and BVP signals [11]. Then, maximum value normalization is applied
to keep the signals in the range between 0 and 1.

2.6 Feature Extraction

The following six different time domain features are computed for each video related
peripheral physiological signal. Let X(n) represents the value of the nth sample of the
processed peripheral physiological signals, n ¼ 1; 2; . . .. . .;N.

1. Mean

lx ¼ 1=N
XN
n¼1

XðnÞ ð1Þ

2. Maximum

Mx ¼ MaxðXðnÞÞ ð2Þ
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3. Minimum

mx ¼ MinðXðnÞÞ ð3Þ

4. Standard Deviations

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðN � 1Þ

XN
n¼1

ðXðnÞ � lxÞ2
vuut ð4Þ

5. Means of the absolute values of the first differences

dx ¼ 1=ðN � 1Þ
XN�1

n¼1

Xðnþ 1Þ�j XðnÞj ð5Þ

6. Means of the absolute values of the second differences

cx ¼ 1=ðN � 2Þ
XN�2

n¼1

Xðnþ 2Þ�j XðnÞj ð6Þ

These statistical features convey information such as typical range, gradient, and
variation of the signals [19]. Then, we employed a feature level fusion (merge all
features from BVP, GSR, and PR) technique before computing classification accura-
cies. In this case, there are 360 extracted features (20 videos � 6 features � 3
peripheral physiological signals) for an observer (half for posed smile videos and other
half for real smile videos) and a total of 8,640 features for all 24 observers. We did not
consider any features in the training set of a test observer that is related to that test
observer. For example, suppose we consider the test data of observer 1 (O1) when
watching the smiler 1, then the data of O1 while watching the other smilers’ videos is
not used to either train or test the classifier. Thus there are 18 (1 observer � 6 fea-
tures � 1 smiler � 3 peripheral physiological signals) testing features and 7,986 (23
observers � 6 features � 19 smilers � 3 peripheral physiological signals) training
features in each execution. Finally, average accuracies over all possible executions are
reported. This leave-one-out process means that our classifiers have seen no physio-
logical signals from training observers nor from training smilers in the test set, our
results is thus completely independent.

3 Experimental Outcomes

Smilers’ affective states are classified into two classes, namely real smiles and posed
smiles from observers’ peripheral physiological features. The analysis is executed on
an Intel(R) Core™ i7-4790 CPU with 3.60 GHz, 16.00 GB of RAM, Operating
System 64-bit computer using MATLAB R2014b. Three different types of classifier are
used to compute classification performances, namely k-nearest neighbor (KNN),
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support vector machine (SVM), and neural network (NN). The feature sets are divided
according to the test observer identifications, such as O1, O2 all the way to O24. When
the test observer is O1, and other observers’ (O2 to O24) features are used to train the
classifiers, we call it O1 and so on. In a similar fashion, test smilers are identified by S1,
S2 all the way to S20. According to our robust leave-one-out process, the final outcome
of O1 is the average value over 20 executions (S1 to S20) for each physiological
feature set.

Parameter tuning is found to be vital factor in determining classification accuracies
using all three of these classifiers. We choose the default Euclidian distance metric for
the KNN classifier and check the variation of classification accuracies with different K
values. The results are depicted in Fig. 2, where error bars indicate standard deviations.
It is clear from Fig. 2 that the classification accuracies decrease with increasing K. It is
also seen that higher accuracies are found for even values of K compared to odd values
of K. A similar result was found in the case of a Parkinson dataset [20], possibly this is
due to some properties of human data in producing decision regions with unusual
topologies.

For SVM, the Gaussian radial basis kernel function is used with various scaling
factors to compute classification accuracies. The variation of average accuracies with
scaling factors is noticeable and explored in Fig. 3, where error bars indicate standard
deviations. The classification accuracies gradually decrease with increasing scaling
factors. The rate of decrease is higher for the low values of the scaling factor (from 1 to
5), and then this rate diminishes. Some research has focused on empirical analysis to
find the best fitted scaling factors to report best performances from SVM classifier [21].

In NN, Levenberg-Marquardt training function with various numbers of hidden
nodes are considered to compute classification accuracies. The variation of average
classification accuracies with the various numbers of hidden nodes of NN classifier are
shown in Fig. 4, again error bars indicate standard deviations.

Fig. 2. Variation of accuracies for ‘K’ values of KNN, (Maximum value is 99.8%).
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The average classification accuracies are improved with increasing number of
hidden nodes as shown in Fig. 4. The errors are also seen to decrease with the
increasing number of hidden nodes according to standard deviation computation. It has
been necessary to focus on empirical analysis to find the best number of hidden nodes,
as we expected and did find that the number of hidden nodes affects classification
accuracies [22]. We note that our results are robust, yet the very high accuracies do
require some discussion. We believe that the results are explained by results [23]
showing highly conserved shared structure in neural activity across individuals in a
consistent observation task. Our work in removing backgrounds, adjusting luminance
and contrast, and order balancing of tasks has led to a consistent task. The results are
also robust as they are leave-one-out of both subject and each test video.

Fig. 3. Variation of accuracies to scaling factors of SVM, (Maximum value is 99.7%).

Fig. 4. Variation of accuracies to the no. of hidden nodes of NN, (Maximum value is 99.6%).
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4 Parameter Fusion

We investigate fusion of parameters using a simple ensemble over the decision of the
above three classifiers (KNN, SVM, and NN) from the three techniques, in four ways.
Firstly, we examine the effect of fusing the three best values, representing the situation
where a thorough investigation of parameter values was done, to attempt to further
improve the results. Secondly, we examine the most perverse setting where we use the
worst results and fuse them, representing a very naïve user making particularly bad
choices. Thirdly, we fuse midrange values, representing a naïve user who has expended
some effort. Finally, we examine some combinations of best/midrange/worst results
(see Table 1). We note that our robust leave-one-of-everything-out process is not able
to overfit, as each observer-stimulus pair is used as a test set in different runs. This is
admittedly a computationally expensive process for robustness.

It is noticeable from Figs. 2, 3, and 4 and Table 1 that the best classification
accuracies are found for k = 1 (99.8%), s = 0.1 (99.7%), and n = 25 (99.6%) and the
worst accuracies are found for k = 25 (56.7%), s = 10 (54.3%), and n = 1 (59.3%). For
the midrange, we choose accuracies between 75–80%. Specifically, we choose k = 8
(78.2%), s = 2.5 (77.5%), and n = 3 (77.7%). Finally, we fuse the physiological fea-
tures at different combinations of these parameter settings. We find that the ensemble
classifier can improve the performance (highlighted in Table 1) for the worst results,
and for combinations involving midrange results. We find that our feature level fusion
does not improve the results when one or more of the best case results are included.

5 Conclusion

This paper investigates the effects of K values, scaling factors, and the number of
hidden nodes, for KNN, SVM, and NN respectively, to distinguish between real and
posed smiles from observers’ peripheral physiological features while other factors

Table 1. Accuracies of ensemble classification with different combinations of parameters
(where K, S, and N are the K values of KNN, scaling of SVM, and Nodes of NN)

k s n KNN SVM NN Ensemble

All best 1 0.1 25 99.8 99.7 99.6 99.6
All worst 25 10 1 56.7 54.3 59.3 73.7
All mid 8 2.5 3 78.2 77.5 77.7 87.6
KNN best 1 10 1 99.8 54.3 59.3 87.1
KNN mid 8 10 1 78.2 54.3 59.3 80.0
KNN worst 25 0.1 25 56.7 99.7 99.6 94.6
SVM best 25 0.1 1 56.7 99.7 59.3 88.1
SVM mid 25 2.5 1 56.7 77.5 59.3 80.1
SVM worst 1 10 25 99.8 54.3 99.6 94.5
NN best 25 10 25 56.7 54.3 99.6 84.6
NN mid 25 10 3 56.7 54.3 77.7 80.0
NN worst 1 0.1 1 99.8 99.7 59.3 97.4
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remain unchanged. From the results of our robust leave-one-out process, we found
substantial effects from the parameters we considered on the smile classification as real
or posed, from observers’ physiological features. We saw that lower K values and
scaling factors, and higher number of hidden nodes were needed to find higher clas-
sification accuracies according to the architecture of each classifier. We noted that
fusing results when we had optimized parameter values for each technique led to no
improvement, strongly indicating that the errors made by each classifier must be quite
similar. Fusing results from cases with less good parameter values led to improved
classification results. We believe this would be a practical test for naïve users of these
techniques to indicate that further parameter tuning should be done. In the future, we
will consider other parameters of each classifier to check the variability of classification
performance and to tune the parameters to design a robust system to distinguish
between real and posed smiles in this context. We will also consider aggregation
approaches designed for complex structured data such as physiological signals [24, 25],
alternative artificial intelligence approaches [26–28], and the use of virtual or syn-
thesised faces [29, 30].
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